Powering the Next Generation of Flight Technologies To Address Aviation Energy Efficiency and the Environment NASA Technology Showcase 29 November 2012 John Kinney Director, Advanced Technology Business Development GE Aviation ## **Historical Improvements** ## **Historical Fuel Burn Improvements** ### **Propulsion Challenge** Sources: Air Transport Association/Bureau of Transportation Statistics #### **Airline Operating Costs** Source: A4A Quarterly Cost Index, US Airlines #### **Regulatory Challenges** | CAEP/6 | 2008 | / 2013 | |--------|------|--------| | | | | CAEP/8 2014 / 2018 EU Carbon Trading 2012 ■ ICAO CO₂ Standard TBD Sources: Air Transport Association, International Air Transport Association Make airlines more profitable in an increasingly difficult environment ## The suppliers' broader task ... Delivering customer value with technology - Clean, quiet, affordable and reliable systems ## More comprehensive than just lowering GHGs **Fuel consumption** **Emissions** O Noise W E R **Ownership Cost** Maintenance **Disruptions** Impact of new tech. #### Our R&D investments - Materials - Aerodynamics - Combustion - Cycles / Planforms - Architectures - Fuels ## **Opportunities for the Future** $$Range = \left(\frac{V_0}{SFC}\right) * \left(\frac{L}{D}\right) * \ln \left(\frac{W_{initial}}{W_{final}}\right)$$ $$= \left(FHV * \eta_{thermal} * \eta_{transfer} * \eta_{propulsive}\right) * \left(\frac{L}{D}\right) * \ln\left(1 + \frac{W_{fuel}}{W_{payload} + W_{empty}}\right)$$ N+1 - N+2 - N+3 - Highly Loaded Compressors - High OPR Low Emissions Combustors - Adaptive cycles - Constant Volume Combustion - Hybrid Electric Propulsion - Low Loss Inlets - Variable Low Loss Exhausts Distributed Power Transmission - Very High BPR Turbofans - Ultra High BPR Turbofans - Open Rotors - Distributed Propulsion - Wake Ingestion - Novel Alloys / MMC's - Non-metallics - Advanced Engine Architectures ### Composite development timeline Technology maturation and advancement ## Vision for 2030 – 2050 Propulsion Systems Revolutionary Ideas Required For Future Aviation ## **Evolution To All Electric Commercial Propulsion** Revolutionary Technologies Needed #### **Gas Turbine Engine Propulsion** - Engines ~15,000 lbs - Fuel ~8,000 lbs - Total ~ 23,000 lbs #### **Hybrid Turbo-Electric Propulsion** - Engines ~15,000 lbs - Fuel ~5,000 lbs - Motors + Converters~ 2000 lbs - Batteries ~ 25,000 lbs - Total ~47,000 lbs #### **All Electric Propulsion** - Fans + Nacelles ~ 6000 lbs - Motors + Converters~ 11,000 lbs - Batteries ~ 55,000 lbs - Total ~72,000 lbs # Commercial Electric Propulsion Coming....But When? #### **Traditional Hurdles** - "System-Level" benefits/impacts - Power/Weight/Volume, packaging - Impacts from production, operation and maintenance - Commercial airframe integration timelines - Electric Motor Ramp Rate/Impulse - Prime reliability - Certification - Cost #### What has changed? - Increased environmental concerns: noise, emissions, fuel burn - Fuel costs - Electrical technology state-of-the-art and projected improvements - Batteries and Fuel cell invention Significant Advancements & Opportunities ## Future Engine Design Space Advanced Power Transfer and Wake Propulsion Enabling Concepts Target Untapped Performance Potential ## Key Pacing Items for Future Programs Increased Airframe Integration Needed Sooner in Process | N+1 | N+2 | N+3 & Beyond | | | |------------------------------|-----------------------------------|--------------------------|--|--| | Refining Propulsion | | | | | | Non-Metallic Materials | LEAP Program (~2016) | | | | | Distributed Controls | | | | | | Advancing Propulsion | | | | | | Advanced Metallics & Coating | gs T | iAl on GEnx ™, Icephobic | | | | Advanced Architectures | | pen Rotor, ADVENT | | | | Full Thermal / Power Mgmt ar | nd Optimization | NVENT | | | | Flight Path Optimization | 4 | D Trajectory | | | | Revolutionary Propulsion | | | | | | Non-Brayton Cycles | | CVC, DARPA Vulcan | | | | Hybrid-Electric Propulsion | | Fuel Cells, Batteries | | | | Distributed Propulsion | Embedded, Pylon Mounted, Electric | | | | Need Balance of Evolutionary & Revolutionary Technologies ## Turbo-electric Distributed Propulsion Design Process System Integration Requires Divergent-Convergent Process Systems integration is a divergent-convergent-divergent process - High level studies assess concept benefits then drive need for detailed studies Fundamental understanding of advanced technology systems needed - Systems integration requires understanding of technology trade factors - Analytic studies and component tests needed to understand system interactions ## Safely landing the world's airline fleets GE's Performance-based Navigation (PBN) Services allow the aircraft to arrive at the airport using precise navigation to ensure optimal efficiency. GE's TrueCourseSM Flight Management Systems accurately predict and guide the aircraft to the efficient trajectory in all four dimensions ## Summary Key challenge is minimizing fuel cost while meeting the constraints of the commercial aviation environment: - Emissions - Noise - Reliability Traditional fuel burn reduction strategies are beginning to yield diminishing returns – innovative technologies are required - Light weight / high propulsive efficiency - Highly integrated / distributed propulsion - Non-Brayton cycles Multiple paths needed...no "all in" on one innovation! - From materials to integrated installations - Near term to 2050+ architectures Revolutionary Ideas Required For Future Aviation